Comparison of analytical and Monte Carlo calculations for heterogeneity corrections in LDR prostate brachytherapy

F. Hueso-González^{1,4}, *J. Vijande¹, F. Ballester¹, J. Pérez-Calatayud², F. A. Siebert³

* Contact: Javier.Vijande@uv.es, 1) Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, Burjassot, Spain, 2) Radiotherapy Department,
La Fe University and Polytechnic Hospital, Valencia, Spain, 3) UK S-H, Campus Kiel, Klinik für Strahlentherapie (Radioonkologie), Kiel, Germany, 4) OncoRay National Center for Radiation Research in Oncology, University Hospital - Medical Faculty C. G. Carus, TU Dresden, Germany (Present address).

This research was supported by a fellowship grant from the Spanish Ministry of Education.

PURPOSE

- Heterogeneities have a significant influence on low energy (LDR) brachytherapy
- Develop algorithm for dose calculation in prostate with calcifications
 - accounts for effect of heterogeneities
 - based on TG-43 reference data
 - real-time calculation speed

- Compare performance of algorithm vs Monte Carlo (MC) simulation
 - dose reliability
 - computing speed
- Assess suitability of algorithm inclusion in clinical commercial treatment planing system (TPS)

MATERIALS & METHODS

Monte Carlo Simulation (PENELOPE2009)

- ullet At the center of the plane, one ^{125}I seed is simulated
 - \hookrightarrow Model 6711-OncoSeed $\stackrel{\mathsf{TM}}{=}$, manufactured by Amersham-Health
- For each voxel:
 - \hookrightarrow The mass density ρ is specified
 - → A composition is defined depending on tissue type

Analytical algorithm

- Input: Radial dose function g(r), Dose rate constant Λ , Air-kerma strength S_k
- For each voxel:
 - \hookrightarrow The mass density ρ is specified
 - \hookrightarrow A mass absorption coefficient (μ/ρ) is defined depending on tissue type
 - \hookrightarrow The distance r to the radioactive seed is computed
- Based on the water-equivalent path method: $\Delta r_{eq} \propto \Delta r \; \frac{\rho}{\rho_w} \; \frac{(\mu/\rho)}{(\mu/\rho)_w}$
- ullet Fundamental idea: released energy $\left.E\right|_r^{r+\Delta r}=E_w\Big|_{r_{eq}}^{r_{eq}+\Delta r_{eq}}$; $E\propto\int g(r')dr'$
- Ray-tracing across the phantom is required (length of intersections)

RESULTS

FIG. 4 - Dose rate by air-kerma strength times the squared distance to the radioactive seed, which is placed at the center of the imaging plane. Heat maps for the homogeneous/Water and heterogeneous/CT cases (Algorithm and Simulation) are shown in a common color scale range for a reliable comparation.

OUTLOOK

- Significant impact of calcifications in dosimetry with respect to homogeneous case
 - Higher dose in calcificated regions (hot spots) due to higher absorption coefficient
 - Lower dose behind calcificated regions (shadows) due to energy conservation
- Remarkable agreement Algorithm Simulation (see FIG. 4 and FIG. 5)
 - 5A: Dose 'shadow' effect caused by two prostate calcifications between seed and calculation point
 - 5B: Dose 'hot spot' effect in a prostate calcification (first peak) and surrounding bones (last peaks)
 - 5C: Dose 'overflow' effect produced by an air cavity (see FIG. 1)
- Computation performance (1 seed, 201×201 voxels): Algorithm 0.16 s \Leftrightarrow 108 h Simulation (10^9 events)

TAB.1 - Conclusions about the weaknesses, strenghts, and challenges regarding the analytical dose calculation algorithm presented.

- → Improvement of treatment quality
- → Suitable for clinical real-time TPS

the imaging planes of FIG. 4 (white arrows in the insets) for three cases of interest.